Ligand-induced structural evolution of Pt55 nanoparticles: amine versus thiol.

نویسندگان

  • Ji Hoon Ryu
  • Sang Soo Han
  • Da Hye Kim
  • Graeme Henkelman
  • Hyuck Mo Lee
چکیده

We report the geometric and electronic effects of amine (with one lone pair electron) and thiol (with two lone pair electrons) ligands on the structural transformation of Pt(55) nanoparticles (NPs) by first-principles calculation. Although a cuboctahedral (COh) structure is less stable than an icosahedral (Ih) structure by 1.36 eV for a bare Pt(55) NP, the activation barrier from the COh to the Ih structure is very high, by 1.97 eV, indicating that it would be difficult to observe the structural evolution of a COh structure to an Ih structure for a bare Pt(55) NP at ambient temperature. However, with the help of the adsorption of methylamine, the structural evolution from a COh structure to an Ih structure is accomplished by the Mackay transformation. This transformation is driven by a combination of both the external forces resulting from the adsorption of the ligand, which pull out the Pt atoms on the face sites of NPs in a radial direction, and the contraction forces in a tangential direction. As more methylamine is added, the Ih structure is observed to return to the original COh structure owing to the directional orbital hybridization that occurs between the Pt NPs and the methylamine. In contrast, such structural evolutions are not observed in the case of methylthiol because the sulfur (S) in the ligand has two lone pair electrons, leading to two Pt-S bonds. As a result, the radial-directed external force that the NPs experience because of the adsorption of methylthiols is much lower than that found in methylamine-ligated NPs. Furthermore, the adsorption of methylthiol leads to an expansion (not contraction) in the tangential direction, which does not qualify as a Mackay transformation. Thus, the Pt NPs ligated with methylthiol do not have a driving force strong enough to cause structural change. The methylthiol-stabilized Pt NPs retain their initial COh structure despite an abundance of ligand adsorption. From these results, we suggest that the NP structure can be controlled by varying the amount and species of ligands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thiol-ene click chemistry: a biocompatible way for orthogonal bioconjugation of colloidal nanoparticles.

Bioconjugation based on crosslinking primary amines to carboxylic acid groups has found broad applications in protein modification, drug development, and nanomaterial functionalization. However, proteins, which are made up of amino acids, typically give nonselective bioconjugation when using primary amine-based crosslinking. In order to control protein orientation and activity after conjugation...

متن کامل

Optimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine- vs thiol-terminated silane

Immobilization of gold nanoparticles on planar surfaces is of great interest to many scientific communities; chemists, physicists, biologists, and the various communities working at the interfaces between these disciplines. Controlling the immobilization step, especially nanoparticles dispersion and coverage, is an important issue for all of these communities. We studied the parameters that can...

متن کامل

Colorimetric sensing strategy for mercury(II) and melamine utilizing cysteamine-modified gold nanoparticles.

A quantitative colorimetric sensing strategy utilizing cysteamine modified gold nanoparticles (CA-AuNPs) as reporters for Hg(2+) and melamine was demonstrated. Cysteamine is a cheap and commercially available aminothiol and is also the most important chelating ligand in coordination chemistry possessing the ability to coordinate to Hg(2+) and melamine. The terminal thiol group in cysteamine is ...

متن کامل

Influence of ligand structure on the stability and oxidation of copper nanoparticles.

The stability and oxidation of copper nanoparticles stabilized with various ligands have been studied. Lauric acid-capped copper nanoparticles were prepared by a modified Brust-Schiffrin method. Then, ligand exchange with an excess of different capping agents was performed. Oxidation and stability were studied by UV-vis, XRD, and TEM. Alkanethiols and oleic acid were found to improve air stabil...

متن کامل

“Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

A "turn-on" thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 5 11  شماره 

صفحات  -

تاریخ انتشار 2011